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The accuracy and computational cost of a direct simulation Monte Carlo simula-
tion are directly related to the number of particles per cell. Optimal computational
efficiency is achieved when the minimum number of particles needed for accurate
resolution is used in each cell. Particle count is shown to scale proportionally with
the inverse of gas density. This indicates that high density regions will tend to have
few particles while low density regions are over resolved. Three methods of control-
ling the distribution of particles are presented—direct variation of particle weights,
variation of time steps, and grid manipulation. A combination of time step variation
and grid manipulation is indicated to be the most effective strategy. A sample plume
expansion problem is used to demonstrate these strategies. Computational savings
of up to an order of magnitude are observed.c© 2000 Academic Press

Nomenclature

n Number density
NP Number of particles per cell
WP Particle weight, ratio of real to simulated molecules
1t Time step
s Time scale factor
1x Size of computational cell
λ Mean free path
V Volume of computational cell
AP Planar area of an axisymmetric cell
RC Radial location of the centroid of an axisymmetric cell

INTRODUCTION

The direct simulation Monte Carlo method (DSMC) is a statistical particle method for
the computation of nonequilibrium gas flows [1]. The gas is modeled at the microscopic
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level using particles which each represent a large number of physical molecules or atoms.
The motion of these model particles and collisional interactions between them collectively
reproduce the behavior of a macroscopic gas.

The accuracy of a DSMC simulation is directly related to the number of particles per
computational cell. As the number of particles employed increases, the resolution of the
computation improves both in terms of physical processes and macroscopic properties. The
numerical error of macroscopic properties predicted by the DSMC method was investigated
by Chen and Boyd [2]. Two components of error were discovered. One is due to the use
of a finite sample size in calculating an average property. The second, called a bias, is due
to the use of a finite number of particles in each cell to simulate collision processes. The
limiting factor is computational cost which is, to first order, proportional to the total number
of particles. When dealing with large flow problems which require many grid cells, it is
generally necessary to use a small number of particles per cell in order to have a reasonable
total for the simulation.

A minimum number of particles per cell is needed to resolve flow physics. Collisions are
calculated between pairs of particles located within the same computational cell. Pairs of
particles are selected and have a probability of collision such that bulk collision rates are
obtained when averaged over many pairs. If the overall collision rate is low, due to a low gas
density, for example, the probability of individual collisions will be correspondingly low. If
the number of particles in a cell is small it is possible to lose low probability events. Twenty
particles per cell is often considered an acceptable number to resolve fluid mechanics. More
particles may be required for accurate resolution in certain circumstances, particularly when
slow finite rate processes or species which have small mole fractions are considered [3].

A numerically optimal calculation is one in which the desired physics are resolved using a
minimum total number of particles. This optimal situation, where each cell has the minimum
number of particles for accurate resolution, is not generally achieved. Large variations in
the number of particles per cell occurs due to density changes and results in over resolution
of portions of the flow domain and wasted computational effort. It is therefore important to
consider how the particle count in each cell is affected by various computational parameters.
The distribution of particles and the computational cost of a simulation can be controlled
through careful manipulation of these parameters.

The problem of controlling the distribution of particles in a particle simulation has been
considered in previous studies. Lapenta and Brackbill considered duplication and consol-
idation of particles in particle-in-cell simulations of charged particles [4]. Various studies
have considered the use of varying particle weights for DSMC simulations, particularly for
axisymmetric flows [5, 1]. This work discusses several methods applicable to the DSMC
technique as well as the benefits and drawbacks of each. Then a general strategy is pre-
sented which may be used to obtain a numerically efficient distribution for a variety of
flows. A sample rarefied gas flow is considered which demonstrates the potential savings
of computational time which may be observed using this approach.

PARTICLE COUNT SCALING

The number of particles per cell is related to the local number density of the gas by the
relation

NP = nV
WP

. (1)
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WP is the particle weight, a computational parameter which is the ratio between the number
of physical molecules and computational particles in the cell. If the density is assumed to
be fixed, the particle count can be increased by increasing the volume of cells or reducing
the particle weight.

In order to accurately model collisions using a statistical approach, the size of a com-
putational cell in a DSMC simulation should be on the order of the local mean free path
[1, pp. 214–216]. The volume of a cell can then be related to the density by the fact that
the mean free path is inversely proportional to the number density. If each dimension of a
cell is1x and this is varied proportionally with the mean free path then this cell size will
be inversely proportional to the density:

1x ∝ λ ∝ n−1. (2)

The volume of a cell is a function of the cell size. The form of this relation depends on the
dimensionality of the problem being simulated.

Two-Dimensional Flows

In a two-dimensional calculation, the cells are planar polygons and the third dimension
of the cell is taken to be unity. The cell volume is given by

V ∝ 1x ×1x × 1

∝ λ2

∝ n−2. (3)

Inserting this expression for cell volume into that for number of particles, Eq. (1), gives the
following relation between number of computational particles and flow density (assuming
constant particle weight):

NP ∝ n−1. (4)

The number of particles and thus the resolution decreases linearly as the density increases.

Three-Dimensional Flows

In a three-dimensional calculation, the cells are polyhedrons. The cell volume is thus
given by

V ∝ 1x ×1x ×1x

∝ λ3

∝ n−3. (5)

Using this expression with Eq. (1) gives the following relation between number of compu-
tational particles and flow density (assuming constant particle weight):

NP ∝ n−2. (6)

The resolution decreases quadratically as density increases.
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Axisymmetric Flows

In axisymmetric calculations, the cells are described by polygons in the simulation plane.
The cell volume is that of the annular region formed by rotating the bounding polygon
through 360 degrees,

V = 2πRC AP, (7)

whereRC is the radial location of the centroid of the cell andAP is the planar area.
The planar area of the cell scales as the square of the local cell size. For the majority of

cells the radial location of the centroid is independent of cell size so the cell volume has
the same scaling as in the two-dimensional case, Eq. (3). Consequently, the particle count
scales as the inverse of the density, Eq. (4).

Cells in the vicinity of the axis of symmetry have a different scaling. The centroid of a
cell adjacent to the axis is located approximately one-half of a cell dimension away from
the axis. The position of the centroid is then proportional to the cell size in near axis cells.
This gives the following scaling for this class of cells

V = 2πRC AP

∝ 1x × (1x ×1x)

∝ λ3

∝ n−3. (8)

This leads to the number of particles scaling with the inverse of the square of the density as
in three-dimensional flows, Eq. (6),

NP ∝ n−2. (9)

Resolution Difficulties

The results for two- and three-dimensional flows both show the interesting result that the
number of computational particles in a cell varies inversely with the number density at that
point. This counter-intuitive result indicates that the flow field is more accurately resolved
due to a larger sample size in parts of the domain that have the lowest density. The greater
resolution is both in terms of physical processes and statistical accuracy.

In a typical problem, the greatest amount of physics (collisions and chemistry) occur in
high density regions. In order to correctly model the flow it is necessary to resolve flow
physics occurring in these regions. The particle weight for the calculation must be set to
a low number so that there will be a reasonable number of particles in these high density
regions. As a result, the more rarefied portions of the flow field will have a large number of
particles and will be over resolved. More computational time is spent calculating the low
density regions than is needed. This results in less efficient calculations.

IMPROVING PARTICLE DISTRIBUTION

From a computational standpoint, an optimal distribution of particles among cells is one
where each cell has a sufficient number to resolve flow physics and provide an acceptable
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sample size and no greater. This would ensure an accurate solution without wasted com-
putational effort due to over resolution. Due to the scaling of particle count with density,
only a flow with uniform number density throughout would naturally have this type of ideal
distribution.

There are various ways in which the particle count distribution can be adjusted to approach
the optimal case. For example, variable time step and particle weight scaling each affect
the particle count. Cell sizes and shapes can be selected so as to improve the distribution.
These three methods are examined in order to develop a general strategy. In each case, an
estimate of the density field is used to set the parameter of interest. This initial estimate
can be based on knowledge of the flow field or a preliminary simulation performed with a
reduced number of particles.

Varying Particle Weights

The most direct method of adjusting the particle count in each cell is to vary the particle
weight across the computational domain. Then, in each cell, simulation particles represent
different numbers of physical atoms or molecules. A particle crossing between cells with
different weights creates a discontinuity in mass flow across the interface. This can be
accounted for by allowing a probability that a particle is either cloned (if the particle weight
decreases across the interface) or destroyed (if the weight increases) when it crosses the
interface. If particle weights are assigned such that they have the correct density dependence,
the variation of particle count with density can be eliminated.

Varying the particle weight is the most direct method of improving resolution.
Equations (4) and (6) show that the main difficulty in terms of particle count is the de-
crease in number of particles with increasing density. Applying particle weights with the
following density dependences would counter this effect:

WP ∝ n−1, 2D

∝ n−2, 3D. (10)

Applying an inverse density based particle weight scaling can have significant impact on
the statistical accuracy of a simulation. The use of geometric weights for axially symmetric
flows was investigated by Denget al. [5]. For application to flow past a blunt-faced cylinder,
the effects of weights on physical accuracy and computational performance were analyzed.
These studies showed that weights lead to additional computational expense and greater
statistical fluctuations. Similar studies are given in Bird [1, p. 372].

This type of scaling is a particular concern for highly compressive flows such as those
generated by a hypersonic blunt body. In order to counteract the density rise caused by
compression in front of the body, the particle weight must drop rapidly. This produces a
significant amount of cloning in the vicinity of the body. The presence of many identical
particles in a region which is likely to have an important physical effect on the flow field
can seriously degrade the accuracy of the calculation. At best there will be less resolution
of this region than expected. In order to avoid this problem, it is suggested that the particle
weight generally not decrease in the direction of the main flow.

Under certain conditions, particle weights can be an effective means of improving particle
resolution. These flows are typically relatively high density expanding flows. A high density
ensures collisional variation of cloned particles while expanding flows avoid the problem
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of significant cloning. This method should be used with caution and only when necessary.
It can rarely be used to offset the entire effect of density variations on particle count without
causing significant statistical problems.

Varying Time Steps

A finite time step is used in the DSMC method to decouple particle movement from
collisions. The magnitude of the time step should be a small fraction of the mean collision
time, a quantity which is inversely proportional to the density. In flows where there is a
large variation in density, there is a commensurate variation in the mean collision time. If
a single time step is used for the entire flow domain, it is limited to the minimum value
corresponding to the highest density region. This results in a waste of computational effort.
Many small time steps are calculated in low density regions where the mean collision time
is high when a single larger step would be sufficient. By varying the time step throughout
the flow domain this inefficiency can be eliminated. In the process, a more uniform particle
count throughout the flow field can be obtained.

The primary restriction on the time step is that it be a small fraction of the mean collision
time. A reasonable choice for time steps is a constant fractionK of the local collision time,

1t = Ktcol. (11)

We can define a local time scales which is the ratio between the local time step,1t , and
a reference time step for the simulation,1tref, which is based on a reference density and
mean collision time. Since collision time is inversely proportional to density, the time scale
s can be related to the local density,

s= 1t

1tref
∝ n−1. (12)

When different time steps are used, a single iteration of the DSMC algorithm no longer
represents the same amount of physical time in each cell. This disparity in elapsed time is
accounted for by effectively weighting all particles by the time scale factor [6]. This variation
in time step causes the effective particle weight to be a function of the flow density,

WP = WP,ref× s

∝ n−1. (13)

Inserting this expression into that for the number of particles per cell (Eq. (1)), gives the
result

NP = nV
WP

∝ n2V. (14)

The volume of cells was found to vary inversely with density. The effect of varying the
simulation time step according to this rule is to reduce the dependence of particle count on
density. Applying the earlier results for cell volume, Eqs. (3) and (5), gives the following
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expressions for particle count:

WP ∝ 1, 2D

∝ n−1, 3D. (15)

The dependence on density is eliminated for two-dimensional flows and reduced for three-
dimensional problems. The behavior of axisymmetric flows is again the same as in two
dimensions away from the flow axis and three dimensions near to the axis.

The use of variable time scaling according to this scheme can thus reduce or eliminate
particle resolution difficulties as well as improving the convergence and efficiency of the cal-
culation. This variation of time steps can easily be achieved if the cells in the computational
domain are sized proportionally to the mean free path. The cell size will be proportional to
the inverse of the density and thus be proportional to the mean collision time. The cell size
can then be used to scale the time steps directly. Cell size can be measured by the minimum
altitude of the cell. If cell stretching is employed (see below) the cell dimension which is
directly scaled to the mean free path should be used to determine the time step.

Grid Manipulation

From the point of view of the physical correctness of the DSMC method, the ideal grid
consists of a set of cells whose dimensions are some fraction of the local mean free path.
The scale length of flow gradients will be on the order of the mean free path and therefore
this size requirement ensures that gradients are properly resolved [1]. Smaller grid spacing
may be necessary to provide sufficient spatial resolution in some cases.

In many flows it is clear from the geometry that the primary gradients will be in a specific
direction. In these circumstances it is reasonable to relax restrictions on cell dimensions in
the directions other than that of the primary gradients. Several mean free paths can be used
rather than one or smaller. Significant improvements in particle distribution can be obtained
at the cost of some spatial resolution.

Consider a two-dimensional flow with no weight or time scaling which is compressed at
a wall. Since the particle count varies as the inverse of the density (Eq. (4)), the compression
will cause a decrease in particle count at the wall. If cells in the vicinity of the wall are
stretched in the direction parallel to the wall by a factor of 10, this increase in cell volume
will counteract the effect of the density rising by the same factor. If the flow is such that the
properties vary slowly along the wall (e.g., bulk flow normal to the surface) the reduction
in spatial resolution will be inconsequential.

In three dimensions, the cells can often be stretched in two directions. Increasing each di-
mension by an order of magnitude leads to a hundredfold increase in volume, compensating
for a two order of magnitude increase in density.

This type of grid manipulation can be particularly important in axisymmetric problems.
Cells near the axis tend to suffer from low particle counts due to three-dimensional type
scaling and are thus difficult to resolve accurately. Stretching cells in the radial direction
has a squared effect on particle count due to the resultant movement of the cell centroid
away from the axis.

Cells can be of any geometric shape as long as they satisfy the size requirement. From
a practical point of view, cells are typically quadrilateral or triangular in two-dimensional
and axisymmetric flows and hexahedral or tetrahedral in three dimensions (structured and
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unstructured grids, respectively). While unstructured grids provide the most flexibility for
meshing complex domains, structured cells are more easily stretched to increase the particle
count and improve the distribution. In general, a hybrid grid which combines the advantages
of both makes the most effective grid.

General Strategies

A combination of grid manipulation and variable time scales will often be the best
means of controlling the distribution of particles. Time scaling can eliminate one level of
density dependence while not impacting the accuracy of the simulation. Creative use of grid
stretching can compensate for a large portion of the remaining dependence. Some spatial
resolution is sacrificed but this can be managed so as to not adversely affect the overall
macroscopic results.

In certain cases it is not desirable to strictly scale the cells by the mean free path. For ex-
ample, flows which contain very low density regions as well as regions of moderate density
are not well suited to strict mean free path scaling [7]. The extremely low density regions
have a very large mean free path which would suggest very large cells. Reasonable spatial
resolution would suggest using cells many times smaller. At the other extreme, it is not nec-
essary to resolve at the level of the mean free path in near-continuum, small gradient flows.
An example of this is the throat of a low density nozzle expansion [8]. Resolving this type
of flow to the level of one mean free path may be unnecessary and certainly very expensive.

It is not necessary for an efficient calculation to have a completely uniform distribution.
In some cases excessive efforts to obtain this may affect the macroscopic results of the cal-
culation either by reduced spatial or statistical resolution. However, attention to this issue is
extremely important when large engineering simulations are performed in order to maintain
a reasonable cost.

DEMONSTRATION RESULTS

The scaling of particle count and the strategies for improving the distribution are demon-
strated by considering a model problem. Figure 1 shows a schematic of the configuration.
An expanding gas plume from a nozzle impacts on a surface placed downstream. The initial
expansion of the plume followed by compression at the surface results in a range of densities
which is suitable for examining resolution and scaling. Although this is a fairly simple flow,
the results should be extensible to more complex problems.

The methods outlined above will be applied to this plume problem with the goal of
approaching a uniform distribution of particles in the domain. Both two-dimensional and
axisymmetric cases will be considered. Twenty particles per cell is chosen to be the desired
level of resolution. Fallavollitaet al. determined that increasing the number of particles
and decreasing the number of sampling steps yields more accurate results [3]. The results
presented here can be scaled to any desired particle threshold by decreasing the overall
particle weight employed in the simulation.

Simulation of the plume begins at the exit of the nozzle and extends above and beyond
the surface. The plume is generated by a heated nozzle flow which was investigated in a
previous study [9]. Inflow profiles at the nozzle exit plane are taken from a DSMC simulation
of this nozzle. At the centerline of the nozzle exit plane the flow conditions are a velocity
of 1100 m/s, number density of 4.8× 1021 m−3, and temperature of 98 K. The same inflow
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FIG. 1. Schematic of demonstration impingement case.

conditions will be used for both axisymmetric and two-dimensional simulations. The test
gas is molecular nitrogen and is assumed to be vibrationally and chemically frozen.

The DSMC computations are performed using a scalar optimized, parallel algorithm
called MONACO [10]. This code handles hybrid computational grids and provides the
ability to use a unique particle weight and time step in each cell.

Two-Dimensional Case

The simplest, interesting case to consider is two-dimensional flow. The problem then
involves the plume from a plane nozzle impinging on an infinitely wide plate. Although this
configuration is not representative of a real problem, a two-dimensional simulation most
clearly shows the effects of density scaling and demonstrates the appropriate strategies.

As a base case, the flow is calculated using a fully unstructured (triangulated) grid. Cell
sizes are twice the local mean free path as determined by a coarse, preliminary calculation.
Two mean free paths are used in order to reduce the computational cost. For purposes of this
study this level of spatial resolution is sufficient. Figure 2 shows the grid for this calculation.

FIG. 2. Two-dimensional unstructured grid for demonstration impingement case.
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FIG. 3. Density and particle count along stagnation line for base two-dimensional case.

Compression of the gas at the surface results in a high density of grid cells while expansion
away from the body causes the cells to rapidly grow in size.

Data at the symmetry plane will be examined to consider the effects of particle count
scaling. The symmetry plane is also a stagnation plane for the flow so that the maximum
compression at the surface occurs here. The wide range of densities occurring on this plane
(or line in the simulation space) makes this the most interesting portion of the domain to
consider for this study.

Figure 3 shows results taken along the stagnation line. Number density and particle count
are plotted against distance from the nozzle exit. As expected, the number of particles per
cell increases through the expansion region and decreases as the flow compresses in front
of the impingement surface. Equation (4) indicates that the particle count will be inversely
proportional to the density. This relationship is demonstrated in Fig. 4 which plots the
product of density and particle count along the stagnation line, normalized by the values
at the exit plane. The product is constant on average with fluctuations of 20%. Thus the
particle count is inversely proportional to the density to within this variation.

The deviation from inverse proportionality is a result of the variation of cell sizes occurring
in the grid. Figure 5 plots cell volumes and the square of the local mean free path along

FIG. 4. Normalized product of density and particle count along stagnation line for base two-dimensional case.



DIRECT SIMULATION MONTE CARLO METHOD 737

FIG. 5. Normalized cell volume and square of mean free path along stagnation line for base two-dimensional
case.

the stagnation line. Both profiles are normalized using values at the inflow plane. In an
ideal grid, cell dimensions would be exactly proportional to the mean free path leading to
volumes which are proportional to the square of the mean free path in a two-dimensional
flow. In a real grid, some variation in cell dimensions is necessary to completely fill the
domain. This variation in cell size and volume causes the particle count to deviate from the
inverse linear relationship specified by Eq. (4).

The calculation uses a total of 750,000 particles. If 20 particles per cell is assumed to be
necessary to accurately resolve the flow then the simulation size cannot be made smaller for
this problem without improving the particle distribution. Cells immediately at the surface
have somewhat less than 20 particles so that a smaller particle weight and larger total number
of particles would be needed to satisfy the 20 particle limit throughout.

Embedded Surface Grid

Compression of the gas at the surface causes the particle count to drop rapidly in the
vicinity of the surface. The use of an embedded quadrilateral grid with cell stretching
parallel to the surface can improve resolution. Figure 6 shows a portion of the resulting
hybrid grid when such an embedded grid is included. At the surface, cells are ten mean free
paths in height, perpendicular to the surface gradients, and two in width. At the outer extent
of the embedded grid the aspect ratio of the cells is much closer to unity; this is necessary

FIG. 6. Hybrid grid with embedded quadrilateral grid at surface.
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FIG. 7. Density and particle count along stagnation line for hybrid grid, two-dimensional case.

to have a smooth transition to the unstructured portion of the grid. The embedded grid
extends to the edge of the compression region in front of the body (approximately 10 mm).
It extends over only 80% of the height of the body. Above this point gradients in the vertical
direction start to become important making grid stretching less acceptable. Additionally,
the density has fallen off sufficiently at this point so that the unstructured grid can provide
adequate resolution.

The effect of the embedded grid is to improve particle resolution at the surface without
sacrificing important spatial resolution. Figure 7 shows the variation of density and particle
count along the stagnation line. The number of particles per cell in the compression region
is increased by a factor of five, the same factor used to stretch the surface quadrilateral cells.
Density and temperature profiles from the base and embedded grid cases are compared in
Fig. 8. Both properties are unaffected by the change in grid structure. Stretching of the sur-
face grid makes it possible to fully resolve surface conditions using fewer overall particles.

The use of an embedded grid has no effect on the total number of particles in the sim-
ulation. Since the same particle weight is employed as in the base two-dimensional case,

FIG. 8. Comparison of density and temperature profiles for base two-dimensional and hybrid grid case.
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the size of the simulation remains the same (750,000 particles). However, Fig. 7 indicates
that the total number of particles could be reduced by a factor of two (by increasing the
particle weight) and the nominal 20 particle limit would be satisfied everywhere on the
stagnation plane. Since the stagnation plane has the highest densities and is thus the most
difficult portion of the flow to resolve, this conclusion can be considered to hold through-
out the flow field. Thus, using stretched quadrilateral cells at the surface would allow the
problem to be accurately calculated using only 375,000 particles and a 50% savings in
CPU time.

Variable Time Steps

The scaling of particle count with density can be effectively overcome in two-dimensional
flows by utilizing a time step in each cell which is inversely proportional to the density.
The fully unstructured grid is employed along with time step variation according to this
rule. The local density is estimated using the size of cells, measured by the altitude of the
triangle, since cells are sized according to the mean free path.

The use of time scaling according to an inverse density rule should eliminate the variation
of particle count with density. Figure 9 shows the resulting densities and particle counts along
the stagnation line. The particle count shows no correlation with density and is constant on
average. Fluctuations can again be attributed to deviation in cell size from the local mean
free path. The effect is compounded by the use of cell size in the determination of time
scale. A more accurate scheme would directly utilize the density field which was used for
grid generation.

Density and temperature profiles on the stagnation line for the base and variable time
step cases are compared in Fig. 10. The scaling of time steps has no significant effect on
the resulting flow field properties.

The results of this calculation indicate that for this problem variable time steps are the
most effective way of obtaining a uniform particle count distribution. The distribution is
approximately independent of density throughout the flow field. This provides the most
efficient use of computational power.

The use of variable time steps directly affects the number of particles in the simulation
through the effective particle weight. As a result the total number of particles used is

FIG. 9. Density and particle count along stagnation line for two-dimensional case with variable time steps.
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FIG. 10. Comparison of density and temperature profiles for base two-dimensional and variable time step
case.

only 540,000 with the same overall particle weight. Further, Fig. 9 indicates that the total
number could be reduced by 40% and still satisfy the requirement of 20 particles per cell.
Additionally, the flow converges to a steady state in many fewer iteration using variable
time steps. The length of the transient is reduced by a factor of four in this case. The total
CPU time savings which can be realized for this problem using variable time steps is on the
order of 80%.

Axisymmetric Case

The same impingement flow is used to demonstrate the effects of density scaling in
axisymmetric flows. The configuration is now a conical nozzle generating a plume which
impacts on a disk. Qualitatively the flow field is the same as in two dimensions. However,
the shock is closer to the body and the resulting compression region is smaller in the
axisymmetric case.

As a base case the flow is calculated using an unstructured grid using variable time steps.
The grid used differs from that used in two dimensions because the density field is different.
Time steps are again scaled using cell size. In an axisymmetric flow, the particle count should
scale like a two-dimensional flow away from the axis and like a three-dimensional flow
close to the axis. Using variable time steps the particle count should then be approximately
constant off axis and inversely proportional to density at the axis.

Figure 11 shows density and particle count taken at a radius equal to half the nozzle radius.
This particle count is approximately constant from nozzle to surface which is expected at
this radius. Fluctuations are again a result of variations in cell size. Figure 12 shows a similar
profile taken at the axis. As expected the particle count varies inversely with the density. The
inverse linear relationship is demonstrated in Fig. 13 which plots the normalized product.
The magnitude of fluctuations is somewhat larger than seen previously due to the extremely
low particle count.

This calculation uses a total of 430,000 particles. The extremely low number of particles
at the axis, around 0.25 per cell at the wall, indicates that approximately 80 times more
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FIG. 11. Density and particle count at radius equal to half the nozzle radius for axisymmetric case.

particles would be needed to meet the nominal limit of 20 particles per cell. Although
this limit can be relaxed somewhat for cells in the vicinity of the axis, the size of the
simulation would need to be increased by at least an order of magnitude to achieve reasonable
accuracy.

Embedded Axial Grid

The major resolution difficulty with axisymmetric flows is in the vicinity of the axis. The
scaling of particle count with radius means that there will be a small number of particles near
the axis. This is especially evident in high density regions at the axis due to the additional
scaling with density. In order to properly compute any axisymmetric flow this problem must
be overcome.

There cannot be gradients in the radial direction at the axis of symmetry. It is thus
appropriate to stretch cells in the radial direction in the vicinity of the axis. The use of
stretched quadrilateral cells at the axis can have a dramatic effect on cell volumes and the

FIG. 12. Density and particle count along axis for axisymmetric case.
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FIG. 13. Product of density and particle count along axis for axisymmetric case.

resulting particle counts. Consider a cell which is an equilateral triangle of side lengthl
located at the axis. The volume of this cell is given by

V = 2πRC AP

= 1

2
π l 3. (16)

A quadrilateral cell whose radial extent is stretched by a factor of 3 to 3l has the volume

V = 2πRC AP

= 9π l 3. (17)

A stretched quadrilateral with a three to one aspect ratio therefore results in an 18-fold
increase in cell volume.

An embedded quadrilateral grid is used to resolve the axis of the impingement flow. Four
rows of cells are used. Radial stretching by a factor of three is used for the first row, closest
to the axis. A factor of two is used in the second row and the third and fourth rows are

FIG. 14. Hybrid grid at axis for axisymmetric case.
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FIG. 15. Density and particle count along axis for axisymmetric case using hybrid grid.

unstretched. Within the compression region at the surface, stretching by a factor of five is
used for all rows to compensate for the rise in density. Figure 14 shows a portion of the
embedded grid near the front of the impingement surface.

Figure 15 shows density and particle count along the axis using the hybrid grid. The
number of particles per cell is at an acceptable level across the range and is fairly uniform.
The peak occurring at the beginning of the compression region indicates that the stretching
is somewhat excessive at this point. This results from the necessity to have smoothly varying
cell sizes in the structured grid at the axis.

Density and temperature profiles along the axis for the unstructured and embedded grids
are compared in Fig. 16. Both grids show essentially the same profiles.

The total size of the simulation is unaffected by the change in grid structure and remains
approximately 430,000 particles. Although the nominal minimum of 20 particles per cell
is not reached in most cells, grid stretching results in an order of magnitude increase in

FIG. 16. Comparison of density and temperature profiles for base axisymmetric and hybrid grid case.



744 KANNENBERG AND BOYD

particle count and resolution. The cost of accurately computing this flow would then be
reduced by an order of magnitude.

CONCLUSIONS

The number of particles employed in a DSMC simulation has a first order effect on
the overall cost of the calculation. A uniform number of particles per computational cell
throughout the flow domain ensures that computational effort is used efficiently. This
optimal situation is not obtained under most circumstances because particle count scales
with flow density. The scaling is such that the number of particles decreases with increasing
density, resulting in over resolution of low density regions and wasted computational effort.
This effect is particularly important in three-dimensional flows where the scaling with
density is quadratic.

Several strategies have been presented to improve the distribution of particles. Direct
manipulation of local particle weights is the least desirable method due to the detrimental
effects of cloning of particles on statistical accuracy. Variation of time steps can reduce
the scaling of particle count with density by one order of magnitude without side effects
while also improving convergence. Manipulation of grid structure and shape can result in
significant increases in resolution while sacrificing some spatial resolution.

A model flow problem was considered which included both expansion and compression.
For a two-dimensional simulation, the use of grid cell stretching was found to reduce the
overall cost of the simulation by 50%. The use of variable time steps reduced the cost
by 80%. Under axisymmetric conditions, variable time steps are required to perform the
simulation in reasonable time. The use of grid cell stretching along with variable time steps
reduces the computational cost by an order of magnitude when compared with a simulation
using only variable time steps.

The results from this model problem should be directly applicable to a wide range of
problems when simulated using DSMC. The strategies which lead to a significant improve-
ment in particle distribution and computational efficiency are not limited to this model
problem. Complexities in the physical model such as vibrational relaxation or chemical
reactions should not affect the applicability since the strategies are related to the kinematics
of the gas. The methods extend directly to three-dimensional flows as well where efforts to
improve performance are extremely important.
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